Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 36(6): 1877-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37646973

RESUMO

Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.

2.
Sci Rep ; 12(1): 16118, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167713

RESUMO

We sought in our cross-sectional study to investigate the role of metabolic/hypoxial axis in the development of tamoxifen (TMX) resistance in BC patients. Quantification of plasma LncRNA Taurine upregulated-1 (TUG-1), miRNA 186-5p (miR-186), serum Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-1 α) and Hypoxia Inducible Factor-1 (HIF-1α) was done in a cohort of patients divided into TMX-sensitive and TMX-resistant candidates. Multiple logistic regression and Receiver Operating Characteristic curve were developed for significant predictors. Plasma TUG-1 and miR-186 were significantly elevated in TMX resistant patients. Serum proteins SIRT3, PPAR-1 α and HIF-1α were deficient in TMX resistant patients compared to TMX sensitive patients, respectively. miR-186 was associated with respiratory symptoms, while, HIF-1α was associated with metastases in TMX resistant patients. Strong correlations were found between all parameters. A predictive model was constructed with TUG-1 and HIF-1α to estimate TMX resistance in BC patients with 88.3% sensitivity and 91.6% specificity. Hypoxia and metabolic dysregulations play important role in the development of TMX resistance in BC patients. Correlation between hypoxia, carcinogenesis and patient's mortality have led to more aggressive phenotypes, increased risk of metastasis and resistance to TMX.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Sirtuína 3 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estudos Transversais , Feminino , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Receptores Ativados por Proliferador de Peroxissomo , Proliferadores de Peroxissomos , RNA Longo não Codificante/genética , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Taurina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...